Modelling the Small Throw Fault Effect on the Stability of a Mining Roadway and Its Verification by In Situ Investigation
Małkowski Piotr,
Ostrowski Łukasz and
Bachanek Piotr
Additional contact information
Małkowski Piotr: Faculty of Mining and Geoengineering, AGH University of Science and Technology, 30-059 Kraków, Poland
Ostrowski Łukasz: Faculty of Mining and Geoengineering, AGH University of Science and Technology, 30-059 Kraków, Poland
Bachanek Piotr: Tytan sp. z O.O. Mining Company, 41-400 Mysłowice, Poland
Energies, 2017, vol. 10, issue 12, 1-21
Abstract:
The small throw fault zones cause serious problems for mining engineers. The knowledge about the range of fractured zone around the roadway and about roadway’s contour deformations helps a lot with the right support design or its reinforcement. The paper presents the results of numerical analysis of the effect of a small throw fault zone on the convergence of the mining roadway and the extent of the fracturing induced around the roadway. The computations were performed on a dozen physical models featuring various parameters of rock mass and support for the purpose to select the settings that reflects most suitably the behavior of tectonically disturbed and undisturbed rocks around the roadway. Finally, the results of the calculations were verified by comparing them with in situ convergence measurements carried out in the maingate D-2 in the “Borynia-Zofiówka-Jastrz?bie” coal mine. Based on the results of measurements it may be concluded that the rock mass displacements around a roadway section within a fault zone during a year were four times in average greater than in the section tectonically unaffected. The results of numerical calculations show that extent of the yielding zone in the roof reaches two times the throw of the fault, in the floor 3 times the throw, and horizontally approx. 1.5 to 1.8 times the width of modelled fault zone. Only a few elasto-plastic models or models with joints between the rock beds can be recommended for predicting the performance of a roadway which is within a fault zone. It is possible, using these models, to design the roadway support of sufficient load bearing capacity at the tectonically disturbed section.
Keywords: fault; roadway stability; roadway convergence; numerical calculations; in situ measurements (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/12/2082/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/12/2082/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:12:p:2082-:d:121991
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().