EconPapers    
Economics at your fingertips  
 

Efficient Low Temperature Hydrothermal Carbonization of Chinese Reed for Biochar with High Energy Density

Chang Liu, Xin Huang and Lingzhao Kong
Additional contact information
Chang Liu: School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Xin Huang: School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
Lingzhao Kong: Shanghai Advanced Research Institute, CAS. No. 100 Haike Road, Shanghai 201210, China

Energies, 2017, vol. 10, issue 12, 1-10

Abstract: Hydrothermal carbonization (HTC), as an environmental friendly process, presents wide potential applicability for converting biomass to biochar with high energy density. Reed, a major energy crop, was converted by a HTC process in a batch reactor at 200–280 °C for 0.5 to 4 h. Biochar mass yield changed from 66.7% to 19.2% and high heating value (HHV) from 20.0 kJ/g to 28.3 kJ/g, respectively, by increasing the carbonization temperature from 200 °C to 280 °C and decreasing the residence time from 2 h to 1 h. The Fourier Transform infrared spectroscopy (FTIR), X-ray Diffraction (XRD), and Scanning Electron Microscope (SEM) results indicated the lignocellulosic crosslink structure of reed is broken and biochar having a high energy density is obtained with the increase of temperature. The microcrystal features of reed are destroyed and biochar contained mainly lignin fractions. The HTC of biocrude is carried out at 200–280 °C for 2.0 h and the results showed that the obtained biochar has uniform particles filled with carbon microspheres.

Keywords: hydrothermal carbonization (HTC); Chinese reed; biocrude; biochar; high heating value (HHV) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/12/2094/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/12/2094/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:12:p:2094-:d:122426

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2094-:d:122426