EconPapers    
Economics at your fingertips  
 

Chip Temperature-Based Workload Allocation for Holistic Power Minimization in Air-Cooled Data Center

Yan Bai and Lijun Gu
Additional contact information
Yan Bai: School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China
Lijun Gu: School of Control and Computer Engineering, North China Electric Power University, Beijing 102206, China

Energies, 2017, vol. 10, issue 12, 1-19

Abstract: Minimizing the energy consumption is a dominant problem in data center design and operation. To cope with this issue, the common approach is to optimize the data center layout and the workload distribution among servers. Previous works have mainly adopted the temperature at the server inlet as the optimization constraint. However, the inlet temperature does not properly characterize the server’s thermal state. In this paper, a chip temperature-based workload allocation strategy (CTWA-MTP) is proposed to reduce the holistic power consumption in data centers. Our method adopts an abstract heat-flow model to describe the thermal environment in data centers and uses a thermal resistance model to describe the convective heat transfer of the server. The core optimizes the workload allocation with respect to the chip temperature threshold. In addition, the temperature-dependent leakage power of the server has been considered in our model. The proposed method is described as a constrained nonlinear optimization problem to find the optimal solution by a genetic algorithm (GA). We applied the method to a sample data center constructed with computational fluid dynamics (CFD) software. By comparing the simulation results with other different workload allocation strategies, the proposed method prevents the servers from overcooling and achieves a substantial energy saving by optimizing the workload allocation in an air-cooled data center.

Keywords: data center; energy optimization; workload allocation; chip temperature (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/12/2123/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/12/2123/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:12:p:2123-:d:122808

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2123-:d:122808