EconPapers    
Economics at your fingertips  
 

Flow Adjustment Inside and Around Large Finite-Size Wind Farms

Ka Ling Wu and Fernando Porté-Agel
Additional contact information
Ka Ling Wu: Wind Engineering and Renewable Energy Laboratory (WIRE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ENAC-IIE-WIRE, 1015 Lausanne, Switzerland
Fernando Porté-Agel: Wind Engineering and Renewable Energy Laboratory (WIRE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), EPFL-ENAC-IIE-WIRE, 1015 Lausanne, Switzerland

Energies, 2017, vol. 10, issue 12, 1-23

Abstract: In this study, large-eddy simulations are performed to investigate the flow inside and around large finite-size wind farms in conventionally-neutral atmospheric boundary layers. Special emphasis is placed on characterizing the different farm-induced flow regions, including the induction, entrance and development, fully-developed, exit and farm wake regions. The wind farms extend 20 km in the streamwise direction and comprise 36 wind turbine rows arranged in aligned and staggered configurations. Results show that, under weak free-atmosphere stratification ( ? = 1 K/km), the flow inside and above both wind farms, and thus the turbine power, do not reach the fully-developed regime even though the farm length is two orders of magnitude larger than the boundary layer height. In that case, the wind farm induction region, affected by flow blockage, extends upwind about 0.8 km and leads to a power reduction of 1.3% and 3% at the first row of turbines for the aligned and staggered layouts, respectively. The wind farm wake leads to velocity deficits at hub height of around 3.5% at a downwind distance of 10 km for both farm layouts. Under stronger stratification ( ? = 5 K/km), the vertical deflection of the subcritical flow induced by the wind farm at its entrance and exit regions triggers standing gravity waves whose effects propagate upwind. They, in turn, induce a large decelerating induction region upwind of the farm leading edge, and an accelerating exit region upwind of the trailing edge, both extending about 7 km. As a result, the turbine power output in the entrance region decreases more than 35% with respect to the weakly stratified case. It increases downwind as the flow adjusts, reaching the fully-developed regime only for the staggered layout at a distance of about 8.5 km from the farm edge. The flow acceleration in the exit region leads to an increase of the turbine power with downwind distance in that region, and a relatively fast (compared with the weakly stratified case) recovery of the farm wake, which attains its inflow hub height speed at a downwind distance of 5 km.

Keywords: atmospheric boundary layer (ABL); boundary-layer depth; exit region; farm wake; induction region; large-eddy simulation (LES); large finite-size wind farm; turbulence (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/12/2164/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/12/2164/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:12:p:2164-:d:123331

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2164-:d:123331