EconPapers    
Economics at your fingertips  
 

Hydro Power Reservoir Aggregation via Genetic Algorithms

Markus Löschenbrand and Magnus Korpås
Additional contact information
Markus Löschenbrand: Department of Electric Power Engineering, NTNU, 7491 Trondheim, Norway
Magnus Korpås: Department of Electric Power Engineering, NTNU, 7491 Trondheim, Norway

Energies, 2017, vol. 10, issue 12, 1-16

Abstract: Electrical power systems with a high share of hydro power in their generation portfolio tend to display distinct behavior. Low generation cost and the possibility of peak shaving create a high amount of flexibility. However, stochastic influences such as precipitation and external market effects create uncertainty and thus establish a wide range of potential outcomes. Therefore, optimal generation scheduling is a key factor to successful operation of hydro power dominated systems. This paper aims to bridge the gap between scheduling on large-scale (e.g., national) and small scale (e.g., a single river basin) levels, by applying a multi-objective master/sub-problem framework supported by genetic algorithms. A real-life case study from southern Norway is used to assess the validity of the method and give a proof of concept. The introduced method can be applied to efficiently integrate complex stochastic sub-models into Virtual Power Plants and thus reduce the computational complexity of large-scale models whilst minimizing the loss of information.

Keywords: hydro power; reservoir aggregation; scheduling; evolutionary algorithm; genetic algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/12/2165/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/12/2165/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:12:p:2165-:d:123395

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2165-:d:123395