EconPapers    
Economics at your fingertips  
 

Decision Support System for a Low Voltage Renewable Energy System

Iulia Stamatescu, Nicoleta Arghira, Ioana Făgărăşan, Grigore Stamatescu, Sergiu Stelian Iliescu and Vasile Calofir
Additional contact information
Iulia Stamatescu: Department of Industrial Automation and Informatics, Faculty of Automatic Control and Computers, University “Politehnica” of Bucharest, 313 Splaiul Independentei, 06004 Bucharest, Romania
Nicoleta Arghira: Department of Industrial Automation and Informatics, Faculty of Automatic Control and Computers, University “Politehnica” of Bucharest, 313 Splaiul Independentei, 06004 Bucharest, Romania
Ioana Făgărăşan: Department of Industrial Automation and Informatics, Faculty of Automatic Control and Computers, University “Politehnica” of Bucharest, 313 Splaiul Independentei, 06004 Bucharest, Romania
Grigore Stamatescu: Department of Industrial Automation and Informatics, Faculty of Automatic Control and Computers, University “Politehnica” of Bucharest, 313 Splaiul Independentei, 06004 Bucharest, Romania
Sergiu Stelian Iliescu: Department of Industrial Automation and Informatics, Faculty of Automatic Control and Computers, University “Politehnica” of Bucharest, 313 Splaiul Independentei, 06004 Bucharest, Romania
Vasile Calofir: Department of Industrial Automation and Informatics, Faculty of Automatic Control and Computers, University “Politehnica” of Bucharest, 313 Splaiul Independentei, 06004 Bucharest, Romania

Energies, 2017, vol. 10, issue 1, 1-15

Abstract: This paper presents the development of a decision support system (DSS) for a low-voltage grid with renewable energy sources (photovoltaic panels and wind turbine) which aims at achieving energy balance in a pilot microgrid with less energy consumed from the network. The DSS is based on a procedural decision algorithm that is applied on a pilot microgrid, with energy produced from renewable energy sources, but it can be easily generalized for any microgrid. To underline the benefits of the developed DSS two case scenarios (a household and an office building with different energy consumptions) were analyzed. The results and throw added value of the paper is the description of an implemented microgrid, the development and testing of the decision support system on real measured data. Experimental results have demonstrated the validity of the approach in rule-based decision switching.

Keywords: power systems; microgrid; decision support system; distributed energy resources; renewable energy sources; low voltage renewable energy system (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/1/118/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/1/118/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:1:p:118-:d:88159

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:1:p:118-:d:88159