Application of Liquid Hydrogen with SMES for Efficient Use of Renewable Energy in the Energy Internet
Xin Wang,
Jun Yang,
Lei Chen and
Jifeng He
Additional contact information
Xin Wang: School of Electrical Engineering, Wuhan University, Wuhan 430072, China
Jun Yang: School of Electrical Engineering, Wuhan University, Wuhan 430072, China
Lei Chen: School of Electrical Engineering, Wuhan University, Wuhan 430072, China
Jifeng He: State Grid Hubei Electric Power Economic and Technology Research Institute, Wuhan 430077, China
Energies, 2017, vol. 10, issue 2, 1-20
Abstract:
Considering that generally frequency instability problems occur due to abrupt variations in load demand growth and power variations generated by different renewable energy sources (RESs), the application of superconducting magnetic energy storage (SMES) may become crucial due to its rapid response features. In this paper, liquid hydrogen with SMES (LIQHYSMES) is proposed to play a role in the future energy internet in terms of its combination of the SMES and the liquid hydrogen storage unit, which can help to overcome the capacity limit and high investment cost disadvantages of SMES. The generalized predictive control (GPC) algorithm is presented to be appreciatively used to eliminate the frequency deviations of the isolated micro energy grid including the LIQHYSMES and RESs. A benchmark micro energy grid with distributed generators (DGs), electrical vehicle (EV) stations, smart loads and a LIQHYSMES unit is modeled in the Matlab/Simulink environment. The simulation results show that the proposed GPC strategy can reschedule the active power output of each component to maintain the stability of the grid. In addition, in order to improve the performance of the SMES, a detailed optimization design of the superconducting coil is conducted, and the optimized SMES unit can offer better technical advantages in damping the frequency fluctuations.
Keywords: superconducting magnetic energy storage (SMSE); load frequency control; generalized predictive control (GPC); energy internet (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/2/185/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/2/185/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:2:p:185-:d:89684
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().