k-Nearest Neighbor Neural Network Models for Very Short-Term Global Solar Irradiance Forecasting Based on Meteorological Data
Chao-Rong Chen and
Unit Three Kartini
Additional contact information
Chao-Rong Chen: Department of Electrical Engineering, National Taipei University of Technology, 1, Section 3, Zhong-Xiao (Chung-Hsiao) E. Rd., Da’an Dist., Taipei 106, Taiwan
Unit Three Kartini: Department of Electrical Engineering, National Taipei University of Technology, 1, Section 3, Zhong-Xiao (Chung-Hsiao) E. Rd., Da’an Dist., Taipei 106, Taiwan
Energies, 2017, vol. 10, issue 2, 1-18
Abstract:
This paper proposes a novel methodology for very short term forecasting of hourly global solar irradiance (GSI). The proposed methodology is based on meteorology data, especially for optimizing the operation of power generating electricity from photovoltaic (PV) energy. This methodology is a combination of k-nearest neighbor (k-NN) algorithm modelling and artificial neural network (ANN) model. The k-NN-ANN method is designed to forecast GSI for 60 min ahead based on meteorology data for the target PV station which position is surrounded by eight other adjacent PV stations. The novelty of this method is taking into account the meteorology data. A set of GSI measurement samples was available from the PV station in Taiwan which is used as test data. The first method implements k-NN as a preprocessing technique prior to ANN method. The error statistical indicators of k-NN-ANN model the mean absolute bias error (MABE) is 42 W/m2 and the root-mean-square error (RMSE) is 242 W/m2. The models forecasts are then compared to measured data and simulation results indicate that the k-NN-ANN-based model presented in this research can calculate hourly GSI with satisfactory accuracy.
Keywords: global solar irradiance (GSI); photovoltaic (PV); very short term; forecasting; k-nearest neighbor (k-NN); artificial neural network (ANN) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/2/186/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/2/186/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:2:p:186-:d:89729
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().