Development of a General Package for Resolution of Uncertainty-Related Issues in Reservoir Engineering
Liang Xue,
Cheng Dai and
Lei Wang
Additional contact information
Liang Xue: Department of Oil-Gas Field Development Engineering, College of Petroleum Engineering, China University of Petroleum, Beijing 102249, China
Cheng Dai: State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development, SINOPEC Group, Beijing 050021, China
Lei Wang: Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing 100871, China
Energies, 2017, vol. 10, issue 2, 1-16
Abstract:
Reservoir simulations always involve a large number of parameters to characterize the properties of formation and fluid, many of which are subject to uncertainties owing to spatial heterogeneity and insufficient measurements. To provide solutions to uncertainty-related issues in reservoir simulations, a general package called GenPack has been developed. GenPack includes three main functions required for full stochastic analysis in petroleum engineering, generation of random parameter fields, predictive uncertainty quantifications and automatic history matching. GenPack, which was developed in a modularized manner, is a non-intrusive package which can be integrated with any existing commercial simulator in petroleum engineering to facilitate its application. Computational efficiency can be improved both theoretically by introducing a surrogate model-based probabilistic collocation method, and technically by using parallel computing. A series of synthetic cases are designed to demonstrate the capability of GenPack. The test results show that the random parameter field can be flexibly generated in a customized manner for petroleum engineering applications. The predictive uncertainty can be reasonably quantified and the computational efficiency is significantly improved. The ensemble Kalman filter (EnKF)-based automatic history matching method can improve predictive accuracy and reduce the corresponding predictive uncertainty by accounting for observations.
Keywords: reservoir simulation; uncertainty quantification; automatic history matching (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/2/197/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/2/197/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:2:p:197-:d:89881
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().