EconPapers    
Economics at your fingertips  
 

Design and Implementation of Novel Smart Battery Management System for FPGA Based Portable Electronic Devices

Fangrong Xue, Zhi Ling, Yubing Yang and Xingpo Miao
Additional contact information
Fangrong Xue: American Academy of Innovation Education, Pasadena, CA 91101, USA
Zhi Ling: American Academy of Innovation Education, Pasadena, CA 91101, USA
Yubing Yang: American Academy of Innovation Education, Pasadena, CA 91101, USA
Xingpo Miao: The Department of Mechanical Engineering and Materials Science (MEMS), University of Pittsburgh, Pittsburgh, PA 15213, USA

Energies, 2017, vol. 10, issue 3, 1-14

Abstract: This paper presents the analysis and design of a smart battery management system for Field Programmable Gate Array (FPGA) based portable electronic devices. It is a novel concept of incorporating the functionality of a smart battery management system into the FPGA used by portable electronic devices, which provides the following advantages. (1) It lowers cost since the conventional commercial independent battery management circuit can be eliminated; (2) It offers more flexibility because FPGA based battery management algorithms can be specifically designed for different battery chemistries of different devices and can provide the flexibility of algorithms and functionalities updating as well. Smart battery management system concepts include four aspects: (1) smart charging; (2) battery balancing; (3) smart discharging; and (4) safety operating. One novel charging algorithm, which combines the merits of multistage charging and pulse charging, is proposed to charge a Li-ion battery pack smartly. A Proportional Integral (PI) control method is introduced to achieve the current control of charging circuit with considerable close loop stability. Simulation results from the PSIM 9.0.4 software package and experimental results from the prototype built in the lab are demonstrated to verify the effectiveness of smart charging. The realizations of battery balancing, smart discharging, and safety operating are also briefly described by taking advantage of the proposed FPGA based smart battery management system topology, which verify the feasibility of the proposed FPGA based smart battery management system for portable electronic devices.

Keywords: battery management; FPGA; smart charging; portable devices (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/3/264/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/3/264/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:3:p:264-:d:91262

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:264-:d:91262