EconPapers    
Economics at your fingertips  
 

An Efficient Phase-Locked Loop for Distorted Three-Phase Systems

Yijia Cao, Jiaqi Yu, Yong Xu, Yong Li and Jingrong Yu
Additional contact information
Yijia Cao: College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Jiaqi Yu: College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Yong Xu: College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Yong Li: College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Jingrong Yu: School of Information Science and Engineering, Central South University, Changsha 410083, China

Energies, 2017, vol. 10, issue 3, 1-16

Abstract: This paper proposed an efficient phase-locked loop (PLL) that features zero steady-state error of phase and frequency under voltage sag, phase jump, harmonics, DC offsets and step-and ramp-changed frequency. The PLL includes the sliding Goertzel discrete Fourier transform (SGDFT) filter-based fundamental positive sequence component separator (FPSCS), the synchronousreference-frame PLL (SRF-PLL) and the secondary control path (SCP). In order to obtain an accurate fundamental positive sequence component, SGDFT filter is introduced as it features better filtering ability at the frequencies that are integer times of fundamental frequency. Meanwhile, the second order Lagrange-interpolation method is employed to approximate the actual sampling number including both integer and fractional parts as grid frequency may deviate from the rated value. Moreover, an improved SCP with single-step comparison filtering algorithm is employed as it updates reference angular frequency according to the FPSC, which promises a zero steady-state error of phase and improves the frequency tracking speed. In this paper, the mathematical model of the proposed PLL is constructed, its stability is analyzed. Also, design procedure of the control parameters is presented. The effectiveness of the proposed PLL is confirmed by experimental results and comparison with advanced pre-filtering PLLs.

Keywords: distorted grid conditions; SGDFT; Lagrange-interpolation method; frequency adaption; SC (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/3/280/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/3/280/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:3:p:280-:d:91618

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:280-:d:91618