Reduction of Furfural to Furfuryl Alcohol in Liquid Phase over a Biochar-Supported Platinum Catalyst
Ariadna Fuente-Hernández,
Roland Lee,
Nicolas Béland,
Ingrid Zamboni and
Jean-Michel Lavoie
Additional contact information
Ariadna Fuente-Hernández: Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B), Department of Chemical & Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC J1K2R1, Canada
Roland Lee: Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B), Department of Chemical & Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC J1K2R1, Canada
Nicolas Béland: Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B), Department of Chemical & Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC J1K2R1, Canada
Ingrid Zamboni: Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B), Department of Chemical & Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC J1K2R1, Canada
Jean-Michel Lavoie: Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B), Department of Chemical & Biotechnological Engineering, Université de Sherbrooke, Sherbrooke, QC J1K2R1, Canada
Energies, 2017, vol. 10, issue 3, 1-10
Abstract:
In this work, the liquid phase hydrogenation of furfural has been studied using a biochar-supported platinum catalyst in a batch reactor. Reactions were performed between 170 °C and 320 °C, using 3 wt % and 5 wt % of Pt supported on a maple-based biochar under hydrogen pressure varying from 500 psi to 1500 psi for reaction times between 1 h and 6 h in various solvents. Under all reactive conditions, furfural conversion was significant, whilst under specific conditions furfuryl alcohol (FA) was obtained in most cases as the main product showing a selectivity around 80%. Other products as methylfuran (MF), furan, and trace of tetrahydrofuran (THF) were detected. Results showed that the most efficient reaction conditions involved a 3% Pt load on biochar and operations for 2 h at 210 °C and 1500 psi using toluene as solvent. When used repetitively, the catalyst showed deactivation although only a slight variation in selectivity toward FA at the optimal experimental conditions was observed.
Keywords: biochar; furfural; furfuryl alcohol (FA); hydrogenation; maple; platinum catalyst (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/3/286/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/3/286/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:3:p:286-:d:91714
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().