EconPapers    
Economics at your fingertips  
 

A Short-Term Load Forecasting Model with a Modified Particle Swarm Optimization Algorithm and Least Squares Support Vector Machine Based on the Denoising Method of Empirical Mode Decomposition and Grey Relational Analysis

Dongxiao Niu and Shuyu Dai
Additional contact information
Dongxiao Niu: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Shuyu Dai: School of Economics and Management, North China Electric Power University, Beijing 102206, China

Energies, 2017, vol. 10, issue 3, 1-20

Abstract: As an important part of power system planning and the basis of economic operation of power systems, the main work of power load forecasting is to predict the time distribution and spatial distribution of future power loads. The accuracy of load forecasting will directly influence the reliability of the power system. In this paper, a novel short-term Empirical Mode Decomposition-Grey Relational Analysis-Modified Particle Swarm Optimization-Least Squares Support Vector Machine (EMD-GRA-MPSO-LSSVM) load forecasting model is proposed. The model uses the de-noising method combining empirical mode decomposition and grey relational analysis to process the original load series and forecasts the processed subsequences by the algorithm of modified particle swarm optimization and least square support vector machine. Then, the final forecasting results can be obtained after reconstructing the forecasting series. This paper takes the Jibei area as an example to produce an empirical analysis for load forecasting. The model input includes the hourly load one week before the forecasting day and the daily maximum temperature, daily minimum temperature, daily average temperature, relative humidity, wind force, date type of the forecasting day. The model output is the hourly load of the forecasting day. The models of BP neural network, SVM (Support vector machine), LSSVM (Least squares support vector machine), PSO-LSSVM (Particle swarm optimization-Least squares support vector machine), MPSO-LSSVM (Modified particle swarm optimization-Least squares support vector machine), EMD-MPSO-LSSVM are selected to compare with the model of EMD-GRA-MPSO-LSSVM using the same sample. The comparison results verify that the short-term load forecasting model of EMD-GRA-MPSO-LSSVM proposed in this paper is superior to other models and has strong generalization ability and robustness. It can achieve good forecasting effect with high forecasting accuracy, providing a new idea and reference for accurate short-term load forecasting.

Keywords: short-term load forecasting; empirical mode decomposition; grey relational analysis; modified particle swarm optimization algorithm; least square support vector machine (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (15)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/3/408/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/3/408/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:3:p:408-:d:93647

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:3:p:408-:d:93647