Pareto-Efficient Capacity Planning for Residential Photovoltaic Generation and Energy Storage with Demand-Side Load Management
Somi Jung and
Dongwoo Kim
Additional contact information
Somi Jung: Department of Electronics and Communication Engineering, Hanyang University, Ansan 15588, Korea
Dongwoo Kim: Department of Electronics and Communication Engineering, Hanyang University, Ansan 15588, Korea
Energies, 2017, vol. 10, issue 4, 1-20
Abstract:
Optimal sizing of residential photovoltaic (PV) generation and energy storage (ES) systems is a timely issue since government polices aggressively promote installing renewable energy sources in many countries, and small-sized PV and ES systems have been recently developed for easy use in residential areas. We in this paper investigate the problem of finding the optimal capacities of PV and ES systems in the context of home load management in smart grids. Unlike existing studies on optimal sizing of PV and ES that have been treated as a part of designing hybrid energy systems or polygeneration systems that are stand-alone or connected to the grid with a fixed energy price, our model explicitly considers the varying electricity price that is a result of individual load management of the customers in the market. The problem we have is formulated by a D -day capacity planning problem, the goal of which is to minimize the overall expense paid by each customer for the planning period. The overall expense is the sum of expenses to buy electricity and to install PV and ES during D days. Since each customer wants to minimize his/her own monetary expense, their objectives look conflicting, and we first regard the problem as a multi-objective optimization problem. Additionally, we secondly formulate the problem as a D -day noncooperative game between customers, which can be solved in a distributed manner and, thus, is better fit to the pricing practice in smart grids. In order to have a converging result of the best-response game, we use the so-called proximal point algorithm. With numerical investigation, we find Pareto-efficient trajectories of the problem, and the converged game-theoretic solution is shown to be mostly worse than the Pareto-efficient solutions.
Keywords: capacity planning; photovoltaic (PV) generation and energy storage (ES) systems; multi-objective optimization; noncooperative game; home load management; smart grids (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/4/426/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/4/426/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:4:p:426-:d:93922
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().