EconPapers    
Economics at your fingertips  
 

Data-Driven Predictive Torque Coordination Control during Mode Transition Process of Hybrid Electric Vehicles

Jing Sun, Guojing Xing and Chenghui Zhang
Additional contact information
Jing Sun: School of Information and Electronic Engineering, Shandong Technology and Business University, Yantai 264005, China
Guojing Xing: School of Control Science and Engineering, Shandong University, Jinan 250061, China
Chenghui Zhang: School of Control Science and Engineering, Shandong University, Jinan 250061, China

Energies, 2017, vol. 10, issue 4, 1-21

Abstract: Torque coordination control significantly affects the mode transition quality during the mode transition dynamic process of hybrid electric vehicles (HEV). Most of the existing torque coordination control methods are based on the mechanism model, whose control effect heavily depends on the modeling accuracy of the HEV powertrain. However, the powertrain structure is so complex, that it is difficult to establish its precise mechanism model. In this paper, a torque coordination control strategy using the data-driven predictive control (DDPC) technique is proposed to overcome the shortcomings of mechanism model-based control methods for a clutch-enabled HEV. The proposed control strategy is only based on the measured input-output data in the HEV powertrain, and no mechanism model is needed. The conflicting control requirements of comfortability and economy are included in the cost function. The actual physical constraints of actuators are also explicitly taken into account in the solving process of the data-driven predictive controller. The co-simulation results in Cruise and Simulink validate the effectiveness of the proposed control strategy and demonstrate that the DDPC method can achieve less vehicle jerk, faster mode transition and smaller clutch frictional losses compared with the traditional model predictive control (MPC) method.

Keywords: mode transition; torque coordination; data-driven predictive control (DDPC); hybrid electric vehicle (HEV) (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/4/441/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/4/441/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:4:p:441-:d:94700

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:441-:d:94700