Design and Research of the Movable Hybrid Photovoltaic-Thermal (PVT) System
Lian Zhang and
Zi Jian Chen
Additional contact information
Lian Zhang: Department of New Energy, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
Zi Jian Chen: Department of New Energy, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
Energies, 2017, vol. 10, issue 4, 1-13
Abstract:
In recent years, with the development of photovoltaic system and photo-thermal system technology, hybrid photovoltaic-thermal (PVT) technology has been a breakthrough in many aspects. This paper describes the movable hybrid PVT system from the aspects of appearance structure, energy flow, and control circuit. The system is equipped with rolling wheels and the simulated light sources also can be removed so that the system can be used in the outdoor conditions. The movable system is also suitable for the PVT system and its related applications without any external power supply. This system combines two technologies: photovoltaic power generation and photo-thermal utilization. The first part of the power supply is for the systems own output power supply, and the second part is for generating thermal energy. The two separate parts can be controlled and monitored respectively through the control circuits and the touch screens. The experimental results show that the system can generate 691 kWh electric energy and 3047.8 kWh thermal energy each year under normal working conditions. The efficiency of the proposed movable hybrid PVT system is calculated to be approximately 42.82% using the revised equations that are proposed in this paper. Therefore, the movable hybrid PVT system can meet the daily demands of hot water and electricity power in remote areas or islands and other non-grid areas. It also can be used to conduct experiment tests for the PVT system.
Keywords: photo-thermal utilization; photovoltaic power generation; hybrid photovoltaic-thermal system; control system; efficiency (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/4/507/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/4/507/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:4:p:507-:d:95293
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().