EconPapers    
Economics at your fingertips  
 

Surrogate Measures for the Robust Scheduling of Stochastic Job Shop Scheduling Problems

Shichang Xiao, Shudong Sun and Jionghua (Judy) Jin
Additional contact information
Shichang Xiao: Key Laboratory of Contemporary Design and Integrated Manufacturing Technology of Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
Shudong Sun: Key Laboratory of Contemporary Design and Integrated Manufacturing Technology of Ministry of Education, Northwestern Polytechnical University, Xi’an 710072, China
Jionghua (Judy) Jin: Department of Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48105, USA

Energies, 2017, vol. 10, issue 4, 1-26

Abstract: This study focuses on surrogate measures (SMs) of robustness for the stochastic job shop scheduling problems (SJSSP) with uncertain processing times. The objective is to provide the robust predictive schedule to the decision makers. The mathematical model of SJSSP is formulated by considering the railway execution strategy, which defined that the starting time of each operation cannot be earlier than its predictive starting time. Robustness is defined as the expected relative deviation between the realized makespan and the predictive makespan. In view of the time-consuming characteristic of simulation-based robustness measure ( RM sim), this paper puts forward new SMs and investigates their performance through simulations. By utilizing the structure of schedule and the available information of stochastic processing times, two SMs on the basis of minimizing the robustness degradation on the critical path and the non-critical path are suggested. For this purpose, a hybrid estimation of distribution algorithm (HEDA) is adopted to conduct the simulations. To analyze the performance of the presented SMs, two computational experiments are carried out. Specifically, the correlation analysis is firstly conducted by comparing the coefficient of determination between the presented SMs and the corresponding simulation-based robustness values with those of the existing SMs. Secondly, the effectiveness and the performance of the presented SMs are further validated by comparing with the simulation-based robustness measure under different uncertainty levels. The experimental results demonstrate that the presented SMs are not only effective for assessing the robustness of SJSSP no matter the uncertainty levels, but also require a tremendously lower computational burden than the simulation-based robustness measure.

Keywords: robust scheduling; stochastic job shop scheduling problems; surrogate measures; stochastic processing times; hybrid estimation of distribution algorithm (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/4/543/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/4/543/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:4:p:543-:d:95942

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:543-:d:95942