Development of a Leader-End Reclosing Algorithm Considering Turbine-Generator Shaft Torque
Gyu-Jung Cho,
Ji-Kyung Park,
Seung-Hyun Sohn,
Se-Jin Chung,
Gi-Hyeon Gwon,
Yun-Sik Oh and
Chul-Hwan Kim
Additional contact information
Gyu-Jung Cho: College of Information and Communication Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
Ji-Kyung Park: College of Information and Communication Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
Seung-Hyun Sohn: College of Information and Communication Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
Se-Jin Chung: College of Information and Communication Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
Gi-Hyeon Gwon: College of Information and Communication Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
Yun-Sik Oh: College of Information and Communication Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
Chul-Hwan Kim: College of Information and Communication Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do 16419, Korea
Energies, 2017, vol. 10, issue 5, 1-14
Abstract:
High-speed auto-reclosing is used in power system protection schemes to ensure the stability and reliability of the transmission system; leader-follower auto-reclosing is one scheme type that is widely used. However, when a leader-follower reclosing scheme responds to a permanent fault that affects a transmission line in the proximity of a generation plant, the reclosing directly impacts the turbine-generator shaft; furthermore, the nature of this impact is dependent upon the selection of the leader reclosing terminal. We therefore analyzed the transient torque of the turbine-generator shaft according to the selection of the leader-follower reclosing end between both ends of the transmission line. We used this analysis to propose an adaptive leader-end reclosing algorithm that removes the stress potential of the transient torque to prevent it from damaging the turbine-generator shaft. We conducted a simulation in actual Korean power systems based on the ElectroMagnetic Transients Program (EMTP) and the Dynamic Link Library (DLL) function in EMTP-RV (Restructured Version) to realize the proposed algorithm.
Keywords: circuit breaker switching; power system transient; power system protection; turbine-generator (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/5/622/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/5/622/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:5:p:622-:d:97418
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().