Comparison of Liquid Water Dynamics in Bent Gas Channels of a Polymer Electrolyte Membrane Fuel Cell with Different Channel Cross Sections in a Channel Flooding Situation
Jin Hyun Kim,
Gwang Goo Lee and
Woo Tae Kim
Additional contact information
Jin Hyun Kim: Department of Mechanical and Automotive Engineering, Kongju National University, 1223-24 Cheonan Daero, Seobuk-gu, Cheonan, Chungnam 31080, Korea
Gwang Goo Lee: School of Mechanical and Automotive Engineering, Kyungil University, 50 Gamasil-gil, Hayang-eup, Gyeongsan, Gyeongbuk 38428, Korea
Woo Tae Kim: Department of Mechanical and Automotive Engineering, Kongju National University, 1223-24 Cheonan Daero, Seobuk-gu, Cheonan, Chungnam 31080, Korea
Energies, 2017, vol. 10, issue 6, 1-18
Abstract:
The transport characteristics of water slugs in a bent gas channel of a polymer electrolyte membrane (PEM) fuel cell are numerically studied using the volume of fluid (VOF) method. To investigate the effects of channel cross-sectional shape in a channel flooding situation, the gas channels (GCs) with one rectangular and two trapezoidal cross sections are compared. Parametric studies are also conducted to evaluate the effects of the contact angle of the top and side walls, the contact angle of the gas diffusion layer (GDL) surface, and the air inlet velocity. Considering both of the water volume fraction (WVF) and GDL water coverage ratio (WCR), the trapezoidal channel with open angles of 60 degrees provides the most favorable performance in a channel flooding condition. Among all the top and side wall contact angles considered, the hydrophobic contact angle of 120 degrees shows the best results. Among the three GDL contact angles of 90, 110 and 140 degrees, the hydrophobic GDL contact angle of 140 degrees provides the most favorable water removal characteristics in a channel flooding situation. For all cross-sectional shapes, the water removal rate increases and the liquid water interface shows more complex patterns as the air inlet velocity increases.
Keywords: polymer electrolyte membrane (PEM) fuel cell; water management; channel flooding; slug flow; bent gas channel (GC); volume of fluid (VOF) method (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/6/748/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/6/748/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:6:p:748-:d:99725
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().