Wind Turbine Wake Mitigation through Blade Pitch Offset
Deepu Dilip and
Fernando Porté-Agel
Additional contact information
Deepu Dilip: Wind Engineering and Renewable Energy Laboratory (WIRE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
Fernando Porté-Agel: Wind Engineering and Renewable Energy Laboratory (WIRE), School of Architecture, Civil and Environmental Engineering (ENAC), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
Energies, 2017, vol. 10, issue 6, 1-17
Abstract:
The reduction in power output associated with complex turbine-wake interactions in wind farms necessitates the development of effective wake mitigation strategies. One approach to this end entails the downregulation of individual turbines from its maximum power point with the objective of optimizing the overall wind farm productivity. Downregulation via blade pitch offset has been of interest as a potential strategy, though the viability of this method is still not clear, especially in regard to its sensitivity to ambient turbulence. In this study, large-eddy simulations of a two-turbine arrangement, with the second turbine in the full wake of the first, were performed. The effects of varying the blade pitch angle of the upstream turbine on its wake characteristics, as well as the combined power of the two, were investigated. Of specific interest was the effect of turbulence intensity of the inflow on the efficacy of this method. Results showed enhanced wake recovery associated with pitching to stall, as opposed to pitching to feather, which delayed wake recovery. The increased wake recovery resulted in a noticeable increase in the power of the two-turbine configuration, only in conditions characterized by low turbulence in the incoming flow. Nevertheless, the low turbulence scenarios where the use of this method is favorable, are expected in realistic wind farms, suggesting its possible application for improved power generation.
Keywords: large-eddy simulation (LES); wind turbine wake; atmospheric boundary layer (ABL); rotational actuator disk model (ADM-R); pitch offset (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/6/757/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/6/757/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:6:p:757-:d:99940
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().