EconPapers    
Economics at your fingertips  
 

Constant DC-Capacitor Voltage-Control-Based Harmonics Compensation Strategy of Smart Charger for Electric Vehicles in Single-Phase Three-Wire Distribution Feeders

Fuka Ikeda, Hiroaki Yamada, Toshihiko Tanaka and Masayuki Okamoto
Additional contact information
Fuka Ikeda: Department of Electrical and Electronic Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
Hiroaki Yamada: Department of Electrical and Electronic Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
Toshihiko Tanaka: Department of Electrical and Electronic Engineering, Yamaguchi University, 2-16-1 Tokiwadai, Ube, Yamaguchi 755-8611, Japan
Masayuki Okamoto: Department of Electrical Engineering, National Institute of Technology, Ube College, 2-14-1 Tokiwadai, Ube, Yamaguchi 755-8555, Japan

Energies, 2017, vol. 10, issue 6, 1-13

Abstract: This paper discusses harmonic current compensation of the constant DC-capacitor voltage-control (CDCVC)-based strategy of smart chargers for electric vehicles (EVs) in single-phase three-wire distribution feeders (SPTWDFs) under nonlinear load conditions. The basic principle of the CDCVC-based harmonics compensation strategy under nonlinear load conditions is discussed in detail. The instantaneous power flowing into the three-leg pulse-width modulated (PWM) rectifier, which performs as a smart charger, shows that the CDCVC-based strategy achieves balanced and sinusoidal source currents with a unity power factor. The CDCVC-based harmonics compensation strategy does not require any calculation blocks of fundamental reactive, unbalanced active, and harmonic currents. Thus, the authors propose a simplified algorithm to compensate for reactive, unbalanced active, and harmonic currents. A digital computer simulation is implemented to confirm the validity and high practicability of the CDCVC-based harmonics compensation strategy using PSIM software. Simulation results demonstrate that balanced and sinusoidal source currents with a unity power factor in SPTWDFs are obtained on the secondary side of the pole-mounted distribution transformer (PMDT) during both the battery-charging and discharging operations in EVs, compensating for the reactive, unbalanced active, and harmonic currents.

Keywords: smart charger; single-phase three-wire distribution feeders (SPTWDFs); harmonics compensation; constant DC-capacitor voltage control (CDCVC); three-leg PWM rectifier; bidirectional DC-DC converter; single-phase PLL circuit; single-phase d - q coordinate (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/6/797/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/6/797/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:6:p:797-:d:101203

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:797-:d:101203