EconPapers    
Economics at your fingertips  
 

Implementation of a Real-Time Microgrid Simulation Platform Based on Centralized and Distributed Management

Omid Abrishambaf, Pedro Faria, Luis Gomes, João Spínola, Zita Vale and Juan M. Corchado
Additional contact information
Omid Abrishambaf: GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, IPP—Polytechnic Institute of Porto, Rua DR. Antonio Bernardino de Almeida, 431, Porto 4200-072, Portugal
Pedro Faria: GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, IPP—Polytechnic Institute of Porto, Rua DR. Antonio Bernardino de Almeida, 431, Porto 4200-072, Portugal
Luis Gomes: GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, IPP—Polytechnic Institute of Porto, Rua DR. Antonio Bernardino de Almeida, 431, Porto 4200-072, Portugal
João Spínola: GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, IPP—Polytechnic Institute of Porto, Rua DR. Antonio Bernardino de Almeida, 431, Porto 4200-072, Portugal
Zita Vale: GECAD—Research Group on Intelligent Engineering and Computing for Advanced Innovation and Development, IPP—Polytechnic Institute of Porto, Rua DR. Antonio Bernardino de Almeida, 431, Porto 4200-072, Portugal
Juan M. Corchado: BISITE—Bioinformatics, Intelligent Systems and Educational Technology Research Center, University of Salamanca, Salamanca 37008, Spain

Energies, 2017, vol. 10, issue 6, 1-14

Abstract: Demand response and distributed generation are key components of power systems. Several challenges are raised at both technical and business model levels for integration of those resources in smart grids and microgrids. The implementation of a distribution network as a test bed can be difficult and not cost-effective; using computational modeling is not sufficient for producing realistic results. Real-time simulation allows us to validate the business model’s impact at the technical level. This paper comprises a platform supporting the real-time simulation of a microgrid connected to a larger distribution network. The implemented platform allows us to use both centralized and distributed energy resource management. Using an optimization model for the energy resource operation, a virtual power player manages all the available resources. Then, the simulation platform allows us to technically validate the actual implementation of the requested demand reduction in the scope of demand response programs. The case study has 33 buses, 220 consumers, and 68 distributed generators. It demonstrates the impact of demand response events, also performing resource management in the presence of an energy shortage.

Keywords: demand response; distributed generation; microgrid; real-time simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (12)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/6/806/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/6/806/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:6:p:806-:d:101424

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:806-:d:101424