EconPapers    
Economics at your fingertips  
 

Multi-Frequency Control in a Stand-Alone Multi-Microgrid System Using a Back-To-Back Converter

Hyeong-Jun Yoo, Thai-Thanh Nguyen and Hak-Man Kim
Additional contact information
Hyeong-Jun Yoo: Department of Electrical Engineering, Incheon National University, Songdo-dong, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea
Thai-Thanh Nguyen: Department of Electrical Engineering, Incheon National University, Songdo-dong, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea
Hak-Man Kim: Department of Electrical Engineering, Incheon National University, Songdo-dong, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Korea

Energies, 2017, vol. 10, issue 6, 1-18

Abstract: A stand-alone multi-microgrid (MMG) system can be formed by connecting multiple stand-alone microgrids (MGs). In the stand-alone MMG system where the frequencies of each MG system are different, a back-to-back (BTB) converter can be used for interconnecting the adjacent MG system. The frequency control performance of the MMG system can be improved by designing the suitable controller of the BTB converter. This study proposes a multi-frequency control in the BTB converter to improve the performance of frequency regulation in the MMG system. Autonomous power sharing between each MG system is achieved by using the proposed multi-frequency control. The stand-alone MMG system where two stand-alone MG systems with different nominal frequencies are interconnected using the BTB converter is simulated in this study to show the feasibility of the proposed multi-frequency controller. Each stand-alone MG system consists of an inverter-based distributed generator (DG) that uses a grid-forming converter with a conventional frequency droop controller. The inverter-based DG is responsible for the primary frequency control in each MG system. To show the effectiveness of the proposed multi-frequency control, a comparison study of the multi-frequency control and the single frequency control is presented in this study. Simulation results show that the system stability can be improved by using the proposed multi-frequency controller.

Keywords: interconnecting microgrids; stand-alone multi-microgrid system; multi-frequency control (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (8)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/6/822/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/6/822/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:6:p:822-:d:101787

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:6:p:822-:d:101787