Transverse Thermoelectricity in Fibrous Composite Materials
Bosen Qian and
Fei Ren
Additional contact information
Bosen Qian: Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA
Fei Ren: Department of Mechanical Engineering, Temple University, Philadelphia, PA 19122, USA
Energies, 2017, vol. 10, issue 7, 1-11
Abstract:
Transverse thermoelectric elements have the potential to decouple the electric current and the heat flow, which could lead to new designs of thermoelectric devices. While many theoretical and experimental studies of transverse thermoelectricity have focused on layered structures, this work examines composite materials with aligned fibrous inclusions. A simplified mathematical model was derived based on the Kirchhoff Circuit Laws (KCL), which were used to calculate the equivalent transport properties of the composite structures. These equivalent properties, including Seebeck coefficient, electrical conductivity, and thermal conductivity, compared well with finite element analysis (FEA) results. Peltier cooling performance was also examined using FEA, which exhibited good agreement to KCL model predictions. In addition, a survey was conducted on selected combinations of thermoelectric materials and metals to rank their transverse thermoelectricity with respect to the dimensionless figure of merit.
Keywords: transverse thermoelectricity; composite materials; fiber inclusion; Peltier cooling; Seebeck coefficient; electrical conductivity; thermal conductivity; figure of merit (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/7/1006/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/7/1006/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:7:p:1006-:d:104866
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().