Utilizing Non-Equilibrium Thermodynamics and Reactive Transport to Model CH 4 Production from the Nankai Trough Gas Hydrate Reservoir
Khadijeh Qorbani,
Bjørn Kvamme and
Tatiana Kuznetsova
Additional contact information
Khadijeh Qorbani: University of Bergen, Physics and Technology department, Allegaten 55, 5007 Bergen, Norway
Bjørn Kvamme: University of Bergen, Physics and Technology department, Allegaten 55, 5007 Bergen, Norway
Tatiana Kuznetsova: University of Bergen, Physics and Technology department, Allegaten 55, 5007 Bergen, Norway
Energies, 2017, vol. 10, issue 7, 1-17
Abstract:
The ongoing search for new sources of energy has brought natural gas hydrate (NGH) reservoirs to the forefront of attention in both academia and the industry. The amount of gas reserves trapped within these reservoirs surpasses all of the conventional fossil fuel sources explored so far, which makes it of utmost importance to predict their production potential and safety. One of the challenges facing those attempting to analyse their behaviour is that the large number of involved phases make NGHs unable to ever reach equilibrium in nature. Field-scale experiments are expensive and time consuming. However, computer simulations have now become capable of modelling different gas production scenarios, as well as production optimization analyses. In addition to temperature and pressure, independent thermodynamic parameters for hydrate stabilization include the hydrate composition and concentrations for all co-existing phases. It is therefore necessary to develop and implement realistic kinetic models accounting for all significant routes for dissociation and reformation. The reactive transport simulator makes it easy to deploy nonequilibrium thermodynamics for the study of CH 4 production from hydrate-bearing sediments by considering each hydrate-related transition as a separate pseudo reaction. In this work, we have used the expanded version of the RetrasoCodeBright (RCB) reactive transport simulator to model exploitation of the methane hydrate (MH) reservoir located in the Nankai Trough, Japan. Our results showed that higher permeabilities in the horizontal direction dominated the pressure drop propagation throughout the hydrate layers and affected their hydrate dissociation rates. Additionally, the comparison of the vertical well versus the horizontal well pattern indicated that hydrate dissociation was slightly higher in the vertical well scenario compared to the horizontal.
Keywords: methane hydrate; gas hydrate production; Nankai Trough; reservoir simulation; reactive transport; non-equilibrium thermodynamic (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/7/1064/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/7/1064/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:7:p:1064-:d:105578
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().