Highly Efficient 3rd Generation Multi-Junction Solar Cells Using Silicon Heterojunction and Perovskite Tandem: Prospective Life Cycle Environmental Impacts
René Itten and
Matthias Stucki
Additional contact information
René Itten: Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
Matthias Stucki: Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland
Energies, 2017, vol. 10, issue 7, 1-18
Abstract:
In this study, the environmental impacts of monolithic silicon heterojunction organometallic perovskite tandem cells (SHJ-PSC) and single junction organometallic perovskite solar cells (PSC) are compared with the impacts of crystalline silicon based solar cells using a prospective life cycle assessment with a time horizon of 2025. This approach provides a result range depending on key parameters like efficiency, wafer thickness, kerf loss, lifetime, and degradation, which are appropriate for the comparison of these different solar cell types with different maturity levels. The life cycle environmental impacts of SHJ-PSC and PSC solar cells are similar or lower compared to conventional crystalline silicon solar cells, given comparable lifetimes, with the exception of mineral and fossil resource depletion. A PSC single-junction cell with 20% efficiency has to exceed a lifetime of 24 years with less than 3% degradation per year in order to be competitive with the crystalline silicon single-junction cells. If the installed PV capacity has to be maximised with only limited surface area available, the SHJ-PSC tandem is preferable to the PSC single-junction because their environmental impacts are similar, but the surface area requirement of SHJ-PSC tandems is only 70% or lower compared to PSC single-junction cells. The SHJ-PSC and PSC cells have to be embedded in proper encapsulation to maximise the stability of the PSC layer as well as handled and disposed of correctly to minimise the potential toxicity impacts of the heavy metals used in the PSC layer.
Keywords: life cycle assessment (LCA); photovoltaics; perovskite; multi-junction; tandem; silicon heterojunction; greenhouse gas; carbon footprint; electricity (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/7/841/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/7/841/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:7:p:841-:d:102368
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().