EconPapers    
Economics at your fingertips  
 

Energy-Related CO 2 Emissions Forecasting Using an Improved LSSVM Model Optimized by Whale Optimization Algorithm

Haoran Zhao, Sen Guo and Huiru Zhao
Additional contact information
Haoran Zhao: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Sen Guo: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Huiru Zhao: School of Economics and Management, North China Electric Power University, Beijing 102206, China

Energies, 2017, vol. 10, issue 7, 1-15

Abstract: Accurate and reliable forecasting on energy-related carbon dioxide (CO 2 ) emissions is of great significance for climate policy decision making and energy planning. Due to the complicated nonlinear relationships of CO 2 emissions with its driving forces, the accurate forecasting for CO 2 emissions is a tedious work, which is an important issue worth studying. In this study, a novel CO 2 emissions prediction method is proposed which employs the latest nature-enlightened optimization method, named the Whale optimization algorithm (WOA), to search the optimized values of two parameters of LSSVM (least squares support vector machine), namely the WOA-LSSVM model. Meanwhile, the driving forces of CO 2 emissions including GDP (gross domestic product), energy consumption and population are chosen to be the import variables of the proposed WOA-LSSVM method. Taking China’s CO 2 emissions as an instance, the effectiveness of WOA-LSSVM-based CO 2 emissions forecasting is verified. The comparative analysis results indicate that the WOA-LSSVM model is significantly superior to other selected models, namely FOA (fruit fly optimization algorithm)-LSSVM, LSSVM, and OLS (ordinary least square) models in terms of CO 2 emissions forecasting. The proposed WOA-LSSVM model has the potential to effectively improve the accuracy of CO 2 emissions forecasting. Meanwhile, as a new nature-enlightened heuristic optimization algorithm, the WOA has the prospect for wide application.

Keywords: CO 2 emissions prediction; Whale optimization algorithm; LSSVM; parameters optimization; driving forces (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (9)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/7/874/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/7/874/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:7:p:874-:d:103042

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:7:p:874-:d:103042