A New Hybrid Wind Power Forecaster Using the Beveridge-Nelson Decomposition Method and a Relevance Vector Machine Optimized by the Ant Lion Optimizer
Sen Guo,
Haoran Zhao and
Huiru Zhao
Additional contact information
Sen Guo: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Haoran Zhao: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Huiru Zhao: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Energies, 2017, vol. 10, issue 7, 1-20
Abstract:
As one of the most promising kinds of the renewable energy power, wind power has developed rapidly in recent years. However, wind power has the characteristics of intermittency and volatility, so its penetration into electric power systems brings challenges for their safe and stable operation, therefore making accurate wind power forecasting increasingly important, which is also a challenging task. In this paper, a new hybrid wind power forecasting method, named the BND-ALO-RVM forecaster, is proposed. It combines the Beveridge-Nelson decomposition method (BND), relevance vector machine (RVM) and ant lion optimizer (ALO). Considering the nonlinear and non-stationary characteristics of wind power data, the wind power time series were firstly decomposed into deterministic, cyclical and stochastic components using BND. Then, these three decomposed components were respectively forecasted using RVM. Meanwhile, to improve the forecasting performance, the kernel width parameter of RVM was optimally determined by ALO, a new Nature-inspired meta-heuristic algorithm. Finally, the wind power forecasting result was obtained by multiplying the forecasting results of those three components. The proposed BND-ALO-RVM wind power forecaster was tested with real-world hourly wind power data from the Xinjiang Uygur autonomous region in China. To verify the effectiveness and feasibility of the proposed forecaster, it was compared with single RVM without time series decomposition and parameter optimization, RVM with time series decomposition based on BND (BND-RVM), RVM with parameter optimization (ALO-RVM), and Generalized Regression Neural Network with data decomposition based on Wavelet Transform (WT-GRNN) using three forecasting performance criteria, namely MAE (Mean Absolute Error), MAPE (Mean Absolute Percentage Error) and RMSE (Root Mean Square Error). The results indicate the proposed BND-ALO-RVM wind power forecaster has the best forecasting performance of all the tested options, which confirms its validity.
Keywords: wind power forecasting; Beveridge-Nelson decomposition method; relevance vector machine; ant lion optimizer; parameter intelligent optimization (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/7/922/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/7/922/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:7:p:922-:d:103567
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().