EconPapers    
Economics at your fingertips  
 

Proposal of Physical-Statistical Model of Thermal Aging Respecting Threshold Value

Jakub Souček, Pavel Trnka and Jaroslav Hornak
Additional contact information
Jakub Souček: ALFMEIER CZ s.r.o., 301 00 Pilsen, Czech Republic
Pavel Trnka: Department of Technologies and Measurement, Faculty of Electrical Engineering, University of West Bohemia, 306 14 Pilsen, Czech Republic
Jaroslav Hornak: Department of Technologies and Measurement, Faculty of Electrical Engineering, University of West Bohemia, 306 14 Pilsen, Czech Republic

Energies, 2017, vol. 10, issue 8, 1-24

Abstract: The aging of electrical insulation material or a system is a main issue for designers of high-voltage (HV) machines. Precise determination of the life cycle of electrical insulation is one way of improving the efficiency of electrical machines involved in the production and transmission of electrical energy. Much effort has been devoted to preparing statistical or physical methods of Electrical Insulating System (EIS) life time estimation in the real operation of electrical machinery. The main aim of this paper is to introduce a new physical-statistical model of thermal aging respecting the threshold value. This model is based on thermal aging model and the main difference between this model and previously published models is taking into account the threshold value of degradation factor. The complete design of this model is presented in this paper, including functions defining the threshold value of the effect of the degradation factor depending on the temperature. Proposed model was verified by accelerated thermal aging test at selected temperatures (160, 170, 180 °C) and time intervals (0, 120, 240 h) on a commonly used transformer board. The breakdown voltage was set as an indicating parameter of the level of thermal aging and was measured according to standard IEC 60243-1. Collected data from these measurements were used for threshold value determination (431.23 K) and verification of proposed physical-statistical model of thermal aging respecting the threshold value.

Keywords: aging model; insulation; Weibull distribution; threshold value (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/8/1120/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/8/1120/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:8:p:1120-:d:106657

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1120-:d:106657