EconPapers    
Economics at your fingertips  
 

Analysis of Low Temperature Preheating Effect Based on Battery Temperature-Rise Model

Xiaogang Wu, Zhe Chen and Zhiyang Wang
Additional contact information
Xiaogang Wu: College of Electrical and Electronics Engineering, Harbin University of Science and Technology, Harbin 150000, China
Zhe Chen: College of Electrical and Electronics Engineering, Harbin University of Science and Technology, Harbin 150000, China
Zhiyang Wang: College of Electrical and Electronics Engineering, Harbin University of Science and Technology, Harbin 150000, China

Energies, 2017, vol. 10, issue 8, 1-15

Abstract: It is difficult to predict the heating time and power consumption associated with the self-heating process of lithium-ion batteries at low temperatures. A temperature-rise model considering the dynamic changes in battery temperature and state of charge is thus proposed. When this model is combined with the ampere-hour integral method, the quantitative relationship among the discharge rate, heating time, and power consumption, during the constant-current discharge process in an internally self-heating battery, is realized. Results show that the temperature-rise model can accurately reflect actual changes in battery temperature. The results indicate that the discharge rate and the heating time present an exponential decreasing trend that is similar to the discharge rate and the power consumption. When a 2 C discharge rate is selected, the battery temperature can rise from ?10 °C to 5 °C in 280 s. In this scenario, power consumption of the heating process does not exceed 15% of the rated capacity. As the discharge rate gradually reduced, the heating time and power consumption of the heating process increase slowly. When the discharge rate is 1 C, the heating time is more than 1080 s and the power consumption approaches 30% of the rated capacity. The effect of discharge rate on the heating time and power consumption during the heating process is significantly enhanced when it is less than 1 C.

Keywords: lithium ion battery; low temperature preheating; temperature-rise model; heating time; power consumption (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/8/1121/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/8/1121/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:8:p:1121-:d:106632

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1121-:d:106632