Off-Design Performances of Subcritical and Supercritical Organic Rankine Cycles in Geothermal Power Systems under an Optimal Control Strategy
Tieyu Gao and
Changwei Liu
Additional contact information
Tieyu Gao: Institute of Turbomachinery, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Changwei Liu: Institute of Turbomachinery, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Energies, 2017, vol. 10, issue 8, 1-25
Abstract:
The conditions of heat source and heat sink in a geothermal ORC system may frequently vary due to variations in geological conditions, ambient temperature and actual operation. In this study, an off-design performance prediction model for geothermal ORC systems is developed according to special designs of critical components, and an optimal control strategy which regards the turbine guide vane angle, the refrigerant pump rotational speed and the cooling water mass flow rate as control variables is proposed to maximize the net power output. Off-design performances of both subcritical and supercritical ORCs are analyzed. The results indicate that, under the optimal control strategy, the net power output of both ORCs increase with greater geothermal water mass flow rate, higher geothermal water inlet temperature and lower cooling water inlet temperature, which is mainly due to a greater working fluid mass flow rate, higher turbine inlet pressure and lower condensing pressure, respectively. The net power output of supercritical ORC is always greater than that of subcritical ORC within the range of this study, but the difference tends to decrease when supercritical ORC activates the geothermal water reinjection temperature restriction.
Keywords: Organic Rankine Cycle; geothermal power system; off-design performance; control strategy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/8/1185/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/8/1185/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:8:p:1185-:d:107909
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().