Icing Forecasting of Transmission Lines with a Modified Back Propagation Neural Network-Support Vector Machine-Extreme Learning Machine with Kernel (BPNN-SVM-KELM) Based on the Variance-Covariance Weight Determination Method
Dongxiao Niu,
Yi Liang,
Haichao Wang,
Meng Wang and
Wei-Chiang Hong ()
Additional contact information
Dongxiao Niu: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Yi Liang: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Haichao Wang: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Meng Wang: School of Economics and Management, North China Electric Power University, Beijing 102206, China
Energies, 2017, vol. 10, issue 8, 1-21
Abstract:
Stable and accurate forecasting of icing thickness is of great significance for the safe operation of the power grid. In order to improve the robustness and accuracy of such forecasting, this paper proposes an innovative combination forecasting model using a modified Back Propagation Neural Network-Support Vector Machine-Extreme Learning Machine with Kernel (BPNN-SVM-KELM) based on the variance-covariance (VC) weight determination method. Firstly, the initial weights and thresholds of BPNN are optimized by mind evolutionary computation (MEC) to prevent the BPNN from falling into local optima and speed up its convergence. Secondly, a bat algorithm (BA) is utilized to optimize the key parameters of SVM. Thirdly, the kernel function is introduced into an extreme learning machine (ELM) to improve the regression prediction accuracy of the model. Lastly, after adopting the above three modified models to predict, the variance-covariance weight determination method is applied to combine the forecasting results. Through performance verification of the model by real-world examples, the results show that the forecasting accuracy of the three individual modified models proposed in this paper has been improved, but the stability is poor, whereas the combination forecasting method proposed in this paper is not only accurate, but also stable. As a result, it can provide technical reference for the safety management of power grid.
Keywords: icing forecasting; back propagation neural network; mind evolutionary computation; bat algorithm; support vector machine; extreme learning machine with kernel; variance-covariance (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/8/1196/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/8/1196/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:8:p:1196-:d:108107
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().