EconPapers    
Economics at your fingertips  
 

Numerical Simulation and Optimization of the Melting Process of Phase Change Material inside Horizontal Annulus

Saiwei Li, Yu Chen and Zhiqiang Sun
Additional contact information
Saiwei Li: School of Energy Science and Engineering, Central South University, Changsha 410083, China
Yu Chen: School of Energy Science and Engineering, Central South University, Changsha 410083, China
Zhiqiang Sun: School of Energy Science and Engineering, Central South University, Changsha 410083, China

Energies, 2017, vol. 10, issue 9, 1-14

Abstract: Latent heat storage (LHS) technologies adopting phase change materials (PCMs) are increasingly being used to bridge the spatiotemporal mismatch between energy production and demand, especially in industries like solar power, where strong cyclic fluctuations exist. The shell-and-tube configuration is among the most prevalent ones in LHS and thus draws special attention from researchers. This paper presents numerical investigations on the melting of PCM, a paraffin blend RT27, inside a horizontal annulus. The volume of fluid model was adopted to permit density changes with the solidification/melting model wherein natural convection was taken into account. The eccentricity and diameter of the inner tube, sub-cooling degree of the PCM, and the heating-surface temperature were considered as variables for study. Through the evaluation of the melting time and exergy efficiency, the optimal parameters of the horizontal annulus were obtained. The results showed that the higher the heating boundary temperature, the earlier the convection appeared and the shorter the melting time. Also, the different eccentricity and diameters of the inner tube influenced the annulus tube interior temperature distribution, which in turn determined the strength and distribution of the resulting natural convection, resulting in varying melting rates.

Keywords: latent heat storage; phase change material; melting; shell and tube; parametric study (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/9/1249/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/9/1249/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:9:p:1249-:d:109402

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1249-:d:109402