EconPapers    
Economics at your fingertips  
 

A Principal Components Rearrangement Method for Feature Representation and Its Application to the Fault Diagnosis of CHMI

Zhuo Liu, Tianzhen Wang, Tianhao Tang and Yide Wang
Additional contact information
Zhuo Liu: Department of Electrical Automation, Shanghai Maritime University, Shanghai 201306, China
Tianzhen Wang: Department of Electrical Automation, Shanghai Maritime University, Shanghai 201306, China
Tianhao Tang: Department of Electrical Automation, Shanghai Maritime University, Shanghai 201306, China
Yide Wang: Institut d’Electronique et Télécommunications de Rennes, UMR CNRS 6164, Polytech Nantes, Rue Christian Pauc, BP 50609, 44306 Nantes CEDEX 3, France

Energies, 2017, vol. 10, issue 9, 1-15

Abstract: Cascaded H-bridge Multilevel Inverter (CHMI) is widely used in industrial applications thanks to its many advantages. However, the reliability of a CHMI is decreased with the increase of its levels. Fault diagnosis techniques play a key role in ensuring the reliability of a CHMI. The performance of a fault diagnosis method depends on the characteristics of the extracted features. In practice, some extracted features may be very similar to ensure a good diagnosis performance at some H-bridges of CHMI. The situation becomes even worse in the presence of noise. To fix these problems, in this paper, signal denoising and data preprocessing techniques are firstly developed. Then, a Principal Components Rearrangement method (PCR) is proposed to represent the different features sufficiently distinct from each other. Finally, a PCR-based fault diagnosis strategy is designed. The performance of the proposed strategy is compared with other fault diagnosis strategies, based on a 7-level CHMI hardware platform.

Keywords: fault diagnosis; feature representation; principal components rearrangement; cascaded H-bridge multilevel inverter (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/9/1273/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/9/1273/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:9:p:1273-:d:109919

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1273-:d:109919