EconPapers    
Economics at your fingertips  
 

Energy Saving Potential of a Thermoelectric Heat Pump-Assisted Liquid Desiccant System in a Dedicated Outdoor Air System

Min-Hwi Kim, Joon-Young Park and Jae-Weon Jeong
Additional contact information
Min-Hwi Kim: New and Renewable Energy Research Division, Korea Institute of Energy Research, 152 Gajeong-Ro, Yuseong-Gu, Daejeon 34129, Korea
Joon-Young Park: Department of Architectural Engineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 04763, Korea
Jae-Weon Jeong: Department of Architectural Engineering, College of Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 04763, Korea

Energies, 2017, vol. 10, issue 9, 1-19

Abstract: The main objective of this study was to develop a thermoelectric heat pump and liquid desiccant system based on a dedicated outdoor air system (THPLD-DOAS). An internally-cooled and -heated liquid desiccant system was used and a thermoelectric heat pump (THP) served as the desiccant cooling and heating energy source for dehumidification and regeneration of the desiccant solution, respectively. In order to investigate the energy-saving potential of the proposed system, its thermal performance and operating energy consumption during the cooling season were compared to those of a conventional dedicated outdoor air system with a ceiling radiant cooling panel system (DOAS-CRCP). Detailed simulations for each system were conducted under hot and humid climatic conditions. Their thermal performance under various room sensible heat factor (RSHF) conditions was evaluated to observe the energy performance, depending on the dehumidification performance, of the liquid desiccant system integrated with the THP. The results showed that the coefficient of performance (COP) of the THP ranged from 0.8 to 1.2 to maintain a sufficient dehumidification rate. The operating energy of the THPLD of the proposed system was 6.6% to 16.0% less than that of the chiller operating energy of a conventional DOAS. Consequently, the proposed system consumed 0.6–23.5% less operating energy compared to the conventional DOAS.

Keywords: thermoelectric heat pump; liquid desiccant; dedicated outdoor air system; cooling radiant ceiling panel (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/10/9/1306/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/9/1306/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:9:p:1306-:d:110656

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-24
Handle: RePEc:gam:jeners:v:10:y:2017:i:9:p:1306-:d:110656