Investigation of Hydraulic-Mechanical Properties of Paste Backfill Containing Coal Gangue-Fly Ash and Its Application in an Underground Coal Mine
Xinguo Zhang,
Jia Lin,
Jinxiao Liu,
Fei Li and
Zhenzhong Pang
Additional contact information
Xinguo Zhang: State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
Jia Lin: School of Civil, Mining and Environmental Engineering, University of Wollongong, Wollongong, NSW 2500, Australia
Jinxiao Liu: State Key Laboratory of Mining Disaster Prevention and Control Co-Founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
Fei Li: College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Zhenzhong Pang: College of Mining and Safety Engineering, Shandong University of Science and Technology, Qingdao 266590, China
Energies, 2017, vol. 10, issue 9, 1-19
Abstract:
Backfilling is widely used to control surface subsidence and stope stability to improve pillar recovery. Furthermore, it is also an effective way to process and dispose of mining waste such as coal gangue and tailings. In this study, the hydraulic-mechanical properties of cemented paste backfill materials (CPB) were investigated. Twenty-eight cemented coal gangue-fly ash backfill mixtures were prepared with different water, cement, fly ash and coal gangue content and the slump, segregation and water bleeding ratio tests were conducted. Increasing fly ash content increased the slump value and decreased the segregation value of the slurry. The uniaxial compressive strength (UCS) of the cemented coal gangue-fly ash backfill samples were tested at different curing times. Based on the test results, an optimized recipe was used for the field trial. Longwall cut and backfilling mining method was used in the 2300 mining district to recycle the coal pillar between longwall 2301 and 2302. Both stress and displacement meters were installed in the goaf and their performance was monitored continuously. An increase in stress and displacement values were observed to occur with the working face advanced (up to 325 m and 375 m, respectively); thereafter, a trend of stabilization was observed. The monitoring results suggest that the backfills can efficiently control the roof movement and surface subsidence as well as improve pillar recovery.
Keywords: cemented coal gangue-fly ash backfill; coal gangue; fly ash; uniaxial compressive strength; stress and displacement monitoring; subsidence (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/9/1309/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/9/1309/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:9:p:1309-:d:110628
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().