Performance Study of a Novel Solar Solid Dehumidification/Regeneration Bed for Use in Buildings Air Conditioning Systems
Wansheng Yang,
Wenhui Wang,
Zezhi Ding,
Zhangyuan Wang,
Xudong Zhao and
Song He
Additional contact information
Wansheng Yang: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
Wenhui Wang: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
Zezhi Ding: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
Zhangyuan Wang: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
Xudong Zhao: School of Engineering, University of Hull, Hull HU6 7RX, UK
Song He: School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, China
Energies, 2017, vol. 10, issue 9, 1-14
Abstract:
In this paper, a novel solar solid dehumidification/regeneration bed has been proposed, and its three regeneration methods, i.e., simulated solar radiation regeneration, microwave regeneration, and combined regeneration of the microwave and simulated solar radiation, were experimentally investigated and compared, as well as the dehumidification performance. The degree of regeneration of the proposed system under the regeneration method combining both microwave irradiation and simulated solar radiation could reach 77.7%, which was 3.77 times higher than that of the system under the simulated solar regeneration method and 1.05 times higher than that of the system under the microwave regeneration. The maximum energy efficiency of the proposed system under the combined regeneration method was 21.7%, while it was only 19.4% for the system under microwave regeneration. All these proved that the combined regeneration method of the simulated solar and microwave radiation not only improved the regeneration efficiency of the system, but also enhanced the energy efficiency. For the dehumidification performance, the maximum transient moisture removal was 14.1 g/kg, the maximum dehumidification efficiency was 68.0% and the maximum speed of dehumidification was 0.294 g/(kg·s) when the inlet air temperature was at 26.09 °C and the air relative humidity was at 89.23%. By comparing the testing results with the semi-empirical results from the Page model, it was indicated that the Page model can predict the regeneration characteristics of the novel solar solid dehumidification/regeneration bed under the combined method of microwave and simulated solar regeneration. The results of this research should prove useful to researchers and engineers to exploit the potential of solar technologies in buildings worldwide.
Keywords: regeneration; microwave; simulated solar radiation; performance; Page model (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/9/1335/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/9/1335/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:9:p:1335-:d:110826
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().