Liquid vs. Gas Phase CO 2 Photoreduction Process: Which Is the Effect of the Reaction Medium?
Alberto Olivo,
Elena Ghedini,
Michela Signoretto,
Matteo Compagnoni and
Ilenia Rossetti
Additional contact information
Alberto Olivo: CatMat Lab, Department of Molecular Sciences and Nanosystems, Ca’ Foscari University Venice and Consortium INSTM, RU of Venice, Via Torino 155, 30172 Venezia, Italy
Elena Ghedini: CatMat Lab, Department of Molecular Sciences and Nanosystems, Ca’ Foscari University Venice and Consortium INSTM, RU of Venice, Via Torino 155, 30172 Venezia, Italy
Michela Signoretto: CatMat Lab, Department of Molecular Sciences and Nanosystems, Ca’ Foscari University Venice and Consortium INSTM, RU of Venice, Via Torino 155, 30172 Venezia, Italy
Matteo Compagnoni: Chemical Plants and Industrial Chemistry Group, Department of Chemistry, Università Degli Studi di Milano, Consortium INSTM, RU of Milano Università and CNR-ISTM, via C. Golgi 19, 20133 Milan, Italy
Ilenia Rossetti: Chemical Plants and Industrial Chemistry Group, Department of Chemistry, Università Degli Studi di Milano, Consortium INSTM, RU of Milano Università and CNR-ISTM, via C. Golgi 19, 20133 Milan, Italy
Energies, 2017, vol. 10, issue 9, 1-14
Abstract:
The use of carbon dioxide, the most concerning environmental issue of the 21st century, as a feedstock for fuels productions still represents an innovative, yet challenging, task for the scientific community. CO 2 photoreduction processes have the potential to transform this hazardous pollutant into important products for the energy industry (e.g., methane and methanol) employing a photocatalyst and light as the only energy input. In order to design an effective process, the high sustainability of this reaction should be matched with the perfect reaction conditions to allow the reactant, photocatalyst, and light source to come together: therefore, the choice of reaction conditions, and in particular its medium, is a crucial issue that needs to be investigated. Throughout this paper, a careful study of carbon dioxide photoreduction in liquid and vapour phases are reported, focusing on their effect on catalyst performances in terms of light harvesting, productivity, and selectivity. Different from most papers in the literature, catalytic tests were performed under extremely low light irradiance, in order to minimise the primary energy input, highlighting that this experimental variable has a great effect on the reaction pathway and, thus, product distribution.
Keywords: CO 2 photoreduction; reaction medium; titanium dioxide; liquid phase; gas phase; product distribution (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/10/9/1394/pdf (application/pdf)
https://www.mdpi.com/1996-1073/10/9/1394/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:10:y:2017:i:9:p:1394-:d:111792
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().