A Quantitative Risk Analysis Method for the High Hazard Mechanical System in Petroleum and Petrochemical Industry
Yang Tang,
Jiajia Jing,
Zhidong Zhang and
Yan Yang
Additional contact information
Yang Tang: School of Mechatronic Engineering, Southwest Petroleum University, Chengdu 610500, China
Jiajia Jing: Drilling & Production Engineering Technology Research Institute, Chuanqing Drilling Engineering Company Limited, CNPC, Guanghan 618000, China
Zhidong Zhang: Drilling & Production Engineering Technology Research Institute, Chuanqing Drilling Engineering Company Limited, CNPC, Guanghan 618000, China
Yan Yang: School of Sciences, Southwest Petroleum University, Chengdu 610500, China
Energies, 2017, vol. 11, issue 1, 1-18
Abstract:
The high hazard mechanical system (HHMS) has three characteristics in the petroleum and petrochemical industry (PPI): high risk, high cost, and high technology requirements. For a HHMS, part, component, and subsystem failures will result in varying degrees and various types of risk consequences, including unexpected downtime, production losses, economic costs, safety accidents, and environmental pollution. Thus, obtaining the quantitative risk level and distribution in a HHMS to control major risk accidents and ensure safe production is of vital importance. However, the structure of the HHMS is more complex than some other systems, making the quantitative risk analysis process more difficult. Additionally, a variety of uncertain risk data hinder the realization of quantitative risk analysis. A few quantitative risk analysis techniques and studies for HHMS exist, especially in the PPI. Therefore, a study on the quantitative risk analysis method for HHMS was completed to obtain the risk level and distribution of high-risk objects. Firstly, Fuzzy Set Theory (FST) was applied to address the uncertain risk data for the occurrence probability (OP) and consequence severity (CS) in the risk analysis process. Secondly, a fuzzy fault tree analysis (FFTA) and a fuzzy event tree analysis (FETA) were used to achieve quantitative risk analysis and calculation. Thirdly, a fuzzy bow-tie model (FBTM) was established to obtain a quantitative risk assessment result according to the analysis results of the FFTA and FETA. Finally, the feasibility and practicability of the method were verified with a case study on the quantitative risk analysis of one reciprocating pump system (RPS). The quantitative risk analysis method for HHMS can provide more accurate and scientific data support for the development of Asset Integrity Management (AIM) systems in the PPI.
Keywords: quantitative risk analysis; high hazard mechanical system; fuzzy fault tree analysis; fuzzy event tree analysis; fuzzy bow-tie model; Fuzzy Set Theory (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/1/14/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/1/14/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2017:i:1:p:14-:d:123925
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().