EconPapers    
Economics at your fingertips  
 

Investigation of Thermal Stress of Cement Sheath for Geothermal Wells during Fracturing

Honglin Xu, Nian Peng, Tianshou Ma and Bin Yang
Additional contact information
Honglin Xu: School of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
Nian Peng: School of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China
Tianshou Ma: State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China
Bin Yang: School of Petroleum and Natural Gas Engineering, Chongqing University of Science and Technology, Chongqing 401331, China

Energies, 2018, vol. 11, issue 10, 1-22

Abstract: Geothermal energy development has increasingly been studied in recently decades because of its renewable and sustainable features. It can be divided into two categories: traditional geothermal (hydrothermal) systems and enhanced geothermal systems (EGS) based on the type of exploitation. The hot dry rock (HDR) in the EGS incorporates about 80% of all thermal energy, and its value is about 100–1000 times that of fossil energy. It is pivotal for geothermal wells to improve the flow conductivity of the HDR mass, enhance the communication area of natural fractures, and constitute the fracture network between injection and production wells by hydraulic treatments. While the wellbore temperature significantly decreases because of fracturing, fluid injection will induce additional thermal stresses in the cement sheath, which will aggravate its failure. Considering the radial nonuniform temperature change, this paper proposes a new thermal stress model for a casing-cement sheath-formation combined system for geothermal wells during fracturing based on elastic mechanics and thermodynamics theory. This model is solved by the Gaussian main elimination method. Based on the analytical model, the thermal stresses of cement sheath have been analyzed. The effects of the main influencing parameters on thermal stresses have also been investigated. Results show that the radial and axial tensile thermal stresses are both obviously larger than tangential tensile thermal stress. The maximum radial and axial thermal stresses always occur at the casing interface while the location of the maximum tangential thermal stress varies. Generally, thermal stresses are more likely to induce radial and axial micro cracks in the cement sheath, and the cement sheath will fail more easily at the casing interface in fracturing geothermal wells. For integrity protection of the cement sheath, a proper decrease of casing wall thickness, casing linear thermal expansion coefficient, cement sheath elasticity modulus, and an increase of the fracturing fluid temperature has been suggested.

Keywords: geothermal wells; fracturing; thermal stress; cement sheath; analytical model (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/10/2581/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/10/2581/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:10:p:2581-:d:172417

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2581-:d:172417