Influence of Blade Leading-Edge Shape on Cavitation in a Centrifugal Pump Impeller
Ran Tao,
Ruofu Xiao and
Zhengwei Wang
Additional contact information
Ran Tao: State Key Laboratory of Hydroscience and Engineering & Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Ruofu Xiao: Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, China Agricultural University, Beijing 100083, China
Zhengwei Wang: State Key Laboratory of Hydroscience and Engineering & Department of Energy and Power Engineering, Tsinghua University, Beijing 100084, China
Energies, 2018, vol. 11, issue 10, 1-16
Abstract:
Cavitation is an important issue in pumps and usually starts on the blade leading-edge. For fixed blades with constant rotational speeds and specific flow rates, the incident angle, which is between the flow direction and the blade installing direction, on the blade leading-edge plays the key role in the cavitation process. The leading-edge shape is crucial on the local flow separation, pressure distribution, and cavitation. Hence, the influence of the leading-edge shape on cavitation has been studied in the current work in a centrifugal pump impeller. The blunt, sharp, ellipse and round leading-edge cases were compared using numerical simulation and verified by experimental data. Results show different features of cavitation. The round and ellipse leading-edge impellers have higher inception cavitation coefficient. It was caused by the sudden pressure drop on leading-edge arc or elliptical arc. The sharp and blunt leading-edge impellers have a wide flow-separation region on leading-edge with a wide low-pressure region. This is because of the sudden turn in geometry on the leading-edge corner. Cavitation grew quickly after inception and caused rapid head-drop in the sharp and blunt leading-edge impellers. Results suggest the critical cavitation performance is dominated by the leading-edge low-pressure area while the inception cavitation is mostly affected by the minimum pressure value on the leading-edge. The critical cavitation performance can be evaluated by checking the leading-edge low-pressure area. The inception cavitation can be evaluated by checking the minimum pressure value on the leading-edge. These strategies can be used in the further leading-edge designs.
Keywords: centrifugal impeller; leading-edge shape; cavitation; pressure drop; rotation correction (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/10/2588/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/10/2588/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:10:p:2588-:d:172633
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().