EconPapers    
Economics at your fingertips  
 

A Review of Airside Heat Transfer Augmentation with Vortex Generators on Heat Transfer Surface

Lei Chai and Savvas A. Tassou
Additional contact information
Lei Chai: RCUK Centre for Sustainable Energy Use in Food Chains (CSEF), Institute of Energy Futures, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK
Savvas A. Tassou: RCUK Centre for Sustainable Energy Use in Food Chains (CSEF), Institute of Energy Futures, Brunel University London, Uxbridge, Middlesex UB8 3PH, UK

Energies, 2018, vol. 11, issue 10, 1-45

Abstract: Heat exchanger performance can be improved via the introduction of vortex generators to the airside surface, based on the mechanism that the generated longitudinal vortices can disrupt the boundary layer growth, increase the turbulence intensity and produce secondary fluid flows over the heat transfer surfaces. The key objective of this paper is to provide a critical overview of published works relevant to such heat transfer surfaces. Different types of vortex generator are presented, and key experimental techniques and numerical methodologies are summarized. Flow phenomena associated with vortex generators embedded, attached, punched or mounted on heat transfer surfaces are investigated, and the thermohydraulic performance (heat transfer and pressure drop) of four different heat exchangers (flat plate, finned circular-tube, finned flat-tube and finned oval-tube) with various vortex-generator geometries, is discussed for different operating conditions. Furthermore, the thermohydraulic performance of heat transfer surfaces with recently proposed vortex generators is outlined and suggestions on using vortex generators for airside heat transfer augmentation are presented. In general, the airside heat transfer surface performance can be substantially enhanced by vortex generators, but their impact can also be significantly influenced by many parameters, such as Reynolds number, tube geometry (shape, diameter, pitch, inline/staggered configuration), fin type (plane/wavy/composite, with or without punched holes), and vortex-generator geometry (shape, length, height, pitch, attack angle, aspect ratio, and configuration). The finned flat-tube and finned oval-tube heat exchangers with recently proposed vortex generators usually show better thermohydraulic performance than finned circular tube heat exchangers. Current heat exchanger optimization approaches are usually based on the thermohydraulic performance alone. However, to ensure quick returns on investment, heat exchangers with complex geometries and surface vortex generators, should be optimized using cost-based objective functions that consider the thermohydraulic performance alongside capital cost, running cost of the system as well as safety and compliance with relevant international standards for different applications.

Keywords: heat transfer augmentation; pressure-drop penalty; heat transfer surface; vortex generators (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (6)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/10/2737/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/10/2737/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:10:p:2737-:d:175288

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2737-:d:175288