EconPapers    
Economics at your fingertips  
 

Energy Management in Buildings with Intermittent and Limited Renewable Resources

Filipe Barata and José Igreja
Additional contact information
Filipe Barata: Instituto Politécnico de Lisboa (IPL), Instituto Superior de Engenharia de Lisboa (ISEL), Electrical, Energy and Automation Department (ADEEEA), Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal
José Igreja: Instituto Politécnico de Lisboa (IPL), Instituto Superior de Engenharia de Lisboa (ISEL), Mechanical Engineering Department (ADEM), Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal

Energies, 2018, vol. 11, issue 10, 1-21

Abstract: This work reports a contribution, in a model predictive control multi-agent systems context, introducing a novel integrative methodology to manage energy networks from the demand-side point of view, in the strong presence of intermittent energy sources, including energy storage in households or car batteries. In particular, the article presents a control-based solution for indoor comfort, which, in addition, optimizes the usage of a limited shared energy resource. The control management is applied, in a distributed way, to a set of so-called thermal control areas (TCAs) and demand units, with the objective of minimizing the cost of energy while maintaining the indoor temperature within the comfort zone bounds, and simultaneously not exceeding a limited amount of shared renewable energy. The thermal control areas are, in general, thermodynamically connected, and are also coupled by energy interrelation constraints established in the particular optimization solution. Energy management is performed with a fixed sequential order established from a previously carried out auction, wherein the bids are made by each unit’s demands, acting as demand-side management agents, based on the daily energy price. The developed solution is explained by a basic algorithm that has been applied to different scenarios, and the results have been compared so as to illustrate the benefits and flexibility of the proposed approach, showing less energy consumption and a 37% cost saving.

Keywords: energy usage; distributed model predictive control; limited and intermittent energy resource; DSM; thermal comfort (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/10/2748/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/10/2748/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:10:p:2748-:d:175487

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2748-:d:175487