Application of Thermal Labyrinth System to Reduce Heating and Cooling Energy Consumption
Minyeop Rim,
Uk-Joo Sung and
Taeyeon Kim
Additional contact information
Minyeop Rim: Center for Climatic Environment Real-scale Testing, Korea Conformity Laboratories, 5 Jeongtong-ro, Deoksan-myeon, Jincheon-gun, Chungbuk 27873, Korea
Uk-Joo Sung: Center for Climatic Environment Real-scale Testing, Korea Conformity Laboratories, 5 Jeongtong-ro, Deoksan-myeon, Jincheon-gun, Chungbuk 27873, Korea
Taeyeon Kim: Department of Architectural Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
Energies, 2018, vol. 11, issue 10, 1-17
Abstract:
To reduce the energy consumption in buildings, modern buildings are increasingly becoming airtight. In these structures, the outdoor air is supplied inside through mechanical ventilation systems, which are essential for ensuring comfortable indoor air quality. However, these systems consume a considerable amount of energy in buildings. One potential solution is using a thermal labyrinth system, which is buried underneath the building. It can pre-cool or pre-heat the outdoor air through heat transfer with the surrounding soil. In this research, a number of case studies were conducted to optimize the thermal labyrinth design. The optimized thermal labyrinth system was derived using computational fluid dynamics (CFD) simulation. In addition, operation algorithms were developed for the efficient operation of the thermal labyrinth system in buildings. The results indicated that there were five operation modes, and the thermal labyrinth could be operated for seven months of the year. The energy reduction effects of the thermal labyrinth system were analyzed and were assessed by the transient system simulation (TRNSYS) tool. A 12% reduction in the annual heating and cooling energy was achieved by applying the thermal labyrinth system.
Keywords: thermal labyrinth system; ventilation; energy consumption; heat transfer; passive; active; package (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/10/2762/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/10/2762/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:10:p:2762-:d:175784
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().