EconPapers    
Economics at your fingertips  
 

Hydrothermal Carbonization of Peat Moss and Herbaceous Biomass (Miscanthus): A Potential Route for Bioenergy

Poritosh Roy, Animesh Dutta and Jim Gallant
Additional contact information
Poritosh Roy: School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
Animesh Dutta: School of Engineering, University of Guelph, Guelph, ON N1G 2W1, Canada
Jim Gallant: REMASCO, 3811 Middle Side Road, Amherstburg, ON N9V 2Y9, Canada

Energies, 2018, vol. 11, issue 10, 1-14

Abstract: Peat moss and miscanthus were hydrothermally carbonized (HTC) either individually or co-processed in a different ratio to produce hydrochar. The hydrochar and pelletized hydrochar were then characterized to determine if hydrochar can be used as an alternative to coal to produce bioenergy from existing coal-fired power plants in Ontario that have already been shut down. The properties of carbonized biomass (either hydrochar or pellets) reveal that fuel grade hydrochar can be produced from peat moss or from the blend of peat moss and miscanthus (agricultural biomass/energy crops). Hydrochar either produced from peat moss or from the blend of peat moss and miscanthus was observed to be hydrophobic and porous compared to raw peat moss or raw miscanthus. The combustion indices of carbonized biomass confirmed that it can be combusted or co-combusted to produce bioenergy and can avoid slagging, fouling, and agglomeration problems of the bioenergy industry. The results of this study revealed that HTC is a promising option for producing solid biofuel from undervalued biomass, especially from high moisture biomass. Co-processing of peat moss with rural biomass, a relatively novel idea which can be a potential solution to heat and power for the rural communities/agri-industry that are not connected with national grids and alleviate their waste management problems. In addition, the hydrochar can also be used to run some of the existing coal-fired power plants that have already been shut down in Ontario without interrupting investment and employment.

Keywords: hydrothermal carbonization (HTC); peat moss; miscanthus; co-processing; physicochemical properties; bioenergy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/10/2794/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/10/2794/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:10:p:2794-:d:176347

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2794-:d:176347