EconPapers    
Economics at your fingertips  
 

Finite Element Analysis to the Effect of Thermo-Mechanical Loads on Stress Distribution in Buried Polyethylene Gas Pipes Jointed by Electrofusion Sockets, Repaired by PE Patches

Reza Khademi-Zahedi and Pouyan Alimouri
Additional contact information
Reza Khademi-Zahedi: Institute of Structural Mechanics, Bauhaus-Universitӓt Weimar, 99423 Weimar, Germany
Pouyan Alimouri: Department of Mechanical Engineering, Shahid Chamran University of Ahvaz, Ahvaz, Iran

Energies, 2018, vol. 11, issue 10, 1-24

Abstract: Polyethylene (PE) gas pipes can be jointed together by electrofusion PE fittings, which have sockets that are fused onto the pipe. Additionally, electrofused PE patches can be used to repair defected pipes. When these pipelines are buried under the ground, they can experience sever local stresses due to the presence of pipe joints, which is superimposed on the other effects including the soil-structure interaction, traffic load, soil’s column weight, a uniform internal pressure, and thermal loads imposed by daily and/or seasonal temperature changes. The present contribution includes two cases. At first, stress variations in buried polyethylene gas pipe and its socket due to the aforementioned loading condition is estimated using finite element. The pipe is assumed to be made of PE80 material and its jointing socket material is PE100. Afterward, the effects of aforementioned thermo-mechanical loads on the stress distribution in patch repaired buried pipes are well investigated. The soil physical properties and the underground polyethylene pipe installation method are based on the American association of state highway and transportation officials and American society for testing and material standards. The computer simulation and analysis of stresses are performed through the finite element package of ANSYS Software. Stress concentrations can be observed in both components due to the presence of the socket or the repair patch. According to the results, the electrofusion sockets can be used for joining PE gas pipes even in hot climate areas. The maximum values of these stresses happen to be in the pipe. Also, the PE100 socket is more sensitive to a temperature drop. Additionally, all four studied patch arrangements show significant reinforcing effects on the defected section of the buried PE gas pipe to withstand applied loads. Meanwhile, the defected buried medium density polyethylene (MDPE) gas pipe and its saddle fused patch can resist the imposed mechanical and thermal loads of +22 °C temperature increase.

Keywords: buried gas distribution pipes; electrofusion socket joints; patch repair; medium density polyethylene (MDPE); high density polyethylene (HDPE); Von Mises stress; finite element method; temperature variation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/10/2818/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/10/2818/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:10:p:2818-:d:176741

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:10:p:2818-:d:176741