EconPapers    
Economics at your fingertips  
 

Measuring the Time-Frequency Dynamics of Return and Volatility Connectedness in Global Crude Oil Markets

Yuki Toyoshima () and Shigeyuki Hamori ()

Energies, 2018, vol. 11, issue 11, 1-18

Abstract: This study analyzes return and volatility spillovers across global crude oil markets for 1 January 1991 to 27 April 2018, using an empirical technique from the time and frequency domains, and makes four key contributions. First, the spillover tables reveal that the West Texas Intermediate (WTI) futures market, which is a common indicator of crude oil indices, contributes the least to both return and volatility spillovers. Second, the results also show that the long-term factor contributes the most to returns spillover, while the short-term factor contributes the most in terms of volatility. Third, the rolling analyses show that the time-variate connectedness in terms of returns tends to be strong, but there was no noticeable change from 1991 to April 2018 in terms of volatility. Finally, the major events between 1991 and April 2018, namely the Asian currency crisis (1997–1998) and the global financial crisis (2007–2008), caused a rise in the total connectedness of returns and volatility.

Keywords: crude oil markets; time-frequency dynamics; connectedness measure (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1) Track citations by RSS feed

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/11/2893/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/11/2893/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:11:p:2893-:d:178030

Access Statistics for this article

Energies is currently edited by Prof. Dr. Enrico Sciubba

More articles in Energies from MDPI, Open Access Journal
Bibliographic data for series maintained by XML Conversion Team ().

 
Page updated 2019-10-12
Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2893-:d:178030