EconPapers    
Economics at your fingertips  
 

Data-Driven Prediction of Load Curtailment in Incentive-Based Demand Response System

Jimyung Kang and Soonwoo Lee
Additional contact information
Jimyung Kang: Korea Electrotechnology Research Institute, Ansan 15588, Korea
Soonwoo Lee: Korea Electrotechnology Research Institute, Ansan 15588, Korea

Energies, 2018, vol. 11, issue 11, 1-14

Abstract: Demand response, in which energy customers reduce their energy consumption at the request of service providers, is spreading as a new technology. However, the amount of load curtailment from each customer is uncertain. This is because an energy customer can freely decide to reduce his energy consumption or not in the current liberalized energy market. Because this uncertainty can cause serious problems in a demand response system, it is clear that the amount of energy reduction should be predicted and managed. In this paper, a data-driven prediction method of load curtailment is proposed, considering two difficulties in the prediction. The first problem is that the data is very sparse. Each customer receives a request for load curtailment only a few times a year. Therefore, the k -nearest neighbor method, which requires a relatively small amount of data, is mainly used in our proposed method. The second difficulty is that the characteristic of each customer is so different that a single prediction method cannot cover all the customers. A prediction method that provides remarkable prediction performance for one customer may provide a poor performance for other customers. As a result, the proposed prediction method adopts a weighted ensemble model to apply different models for different customers. The confidence of each sub-model is defined and used as a weight in the ensemble. The prediction is fully based on the electricity consumption data and the history of demand response events without demanding any other additional internal information from each customer. In the experiment, real data obtained from demand response service providers verifies that the proposed framework is suitable for the prediction of each customer’s load curtailment.

Keywords: demand response; prediction of load curtailment; prediction of demand response (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/11/2905/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/11/2905/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:11:p:2905-:d:178297

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2905-:d:178297