EconPapers    
Economics at your fingertips  
 

Assessment of the Power Output of a Two-Array Clustered WEC Farm Using a BEM Solver Coupling and a Wave-Propagation Model

Philip Balitsky, Gael Verao Fernandez, Vasiliki Stratigaki and Peter Troch
Additional contact information
Philip Balitsky: Department of Civil Engineering, Ghent University, Technologiepark 904, B-9052 Ghent, Belgium
Gael Verao Fernandez: Department of Civil Engineering, Ghent University, Technologiepark 904, B-9052 Ghent, Belgium
Vasiliki Stratigaki: Department of Civil Engineering, Ghent University, Technologiepark 904, B-9052 Ghent, Belgium
Peter Troch: Department of Civil Engineering, Ghent University, Technologiepark 904, B-9052 Ghent, Belgium

Energies, 2018, vol. 11, issue 11, 1-23

Abstract: One of the key challenges in designing a Wave Energy Converter (WEC) farm is geometrical layout, as WECs hydrodynamically interact with one another. WEC positioning impacts both the power output of a given wave-energy project and any potential effects on the surrounding areas. The WEC farm developer must seek to optimize WEC positioning to maximize power output while minimizing capital cost and any potential deleterious effects on the surrounding area. A number of recent studies have shown that a potential solution is placing WECs in dense arrays of several WECs with space between individual arrays for navigation. This innovative arrangement can also be used to reduce mooring and cabling costs. In this paper, we apply a novel one-way coupling method between the NEMOH BEM model and the MILDwave wave-propagation model to investigate the influence of WEC array separation distance on the power output and the surrounding wave field between two densely packed WEC arrays in a farm. An iterative method of applying the presented one-way coupling to interacting WEC arrays is used to compute the wave field in a complete WEC farm and to calculate its power output. The notion of WEC array ‘independence’ in a farm from a hydrodynamic point of view is discussed. The farm is modeled for regular and irregular waves for a number of wave periods, wave incidence angles, and various WEC array separation distances. We found strong dependency of the power output on the wave period and the wave incidence angle for regular waves at short WEC array–array separation distances. For irregular wave operational conditions, a large majority of WEC array configurations within a WEC farm were found to be hydrodynamically ‘independent’.

Keywords: array effects; WEC array; WEC farm; hydrodynamic interactions; separation distance; wave incidence angle; near-field effects; far-field effects; wave-to-wire models; model coupling; BEM; mild-slope; MILDwave; NEMOH (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (7)

Downloads: (external link)
https://www.mdpi.com/1996-1073/11/11/2907/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/11/2907/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:11:p:2907-:d:178330

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:2907-:d:178330