An Effective Ground Fault Location Scheme Using Unsynchronized Data for Multi-Terminal Lines
Dazhi Wang,
Yi Ning and
Cuiling Zhang
Additional contact information
Dazhi Wang: School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Yi Ning: School of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Cuiling Zhang: Ningxia Institute of Science and Technology, Shizuishan, Ningxia 753000, China
Energies, 2018, vol. 11, issue 11, 1-16
Abstract:
Traveling-wave-based methods perform poorly for the fault location of multi-terminal lines as a result of the limitation introduced by being a highly branched structure. The requirement for multi-terminal time synchronization is also a drawback and needs to be improved. In this paper, an effective fault location method for use on multi-terminal lines is proposed, and it does not require the data from each terminal to be synchronized. The method is based on the arrival time differences in the ground and aerial mode waves detected at each terminal. First, fault section identification rules for a three-terminal line are proposed. Then, a multi-terminal topological structure in this paper will be deemed as one consisting of multiple three-terminal lines. Thus, a whole scheme to identify any fault section in a multi-terminal line is presented. Consequently, the fault distance is calculated using the fault distance ratios in the corresponding fault section. The advantage of the proposed scheme is that complete coverage of multi-terminal lines fault location can still be achieved once some synchronized devices are out of operation. To evaluate the performance of the proposed method, many fault cases under different conditions are implemented. The simulation results show that the proposed method can identify the fault section correctly and locate the fault more accurately and reliably than existing methods.
Keywords: fault section identification; fault location; traveling wave; multi-terminal lines; unsynchronized data (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2018
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/11/11/2957/pdf (application/pdf)
https://www.mdpi.com/1996-1073/11/11/2957/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:11:y:2018:i:11:p:2957-:d:179142
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().